Table 2. Distances (\AA) and angles $\left({ }^{\circ}\right)$

PO_{4} tetrahedra						
$\mathrm{P}(1)$		$\mathrm{O}\left(2^{\text {i }}\right.$)	$\mathrm{O}\left(2^{i i}\right)$		$\mathrm{O}(6)$	$\mathrm{O}\left(6^{\text {iii) }}\right.$)
$\mathrm{O}\left(2^{\text {i }}\right.$)		519 (5)	2.486 (7)		$2 \cdot 490$ (6)	$2 \cdot 438$ (6)
$\mathrm{O}\left(2^{\text {i }}\right.$)		99.8 (3)	1.519 (5)		$2 \cdot 438$ (6)	2.490 (6)
O (6)		$0 \cdot 1$ (2)	106.7 (2)		1.520 (4)	2.543 (6)
$\mathrm{O}\left(6^{\text {iii) }}\right.$)		6.7 (2)	110.1 (2)		113.5 (2)	1.520 (4)
$\mathrm{P}(2)$		$\mathrm{O}\left(3^{\text {iii) }}\right.$)	O (4)		$\mathrm{O}\left(5^{\text {iv }}\right.$)	$\mathrm{O}(7)$
$\mathrm{O}\left(3^{\text {iii) }}\right.$)		507 (5)	$2 \cdot 534$ (6)		2.543 (6)	2.422 (5)
$\mathrm{O}(4)$		14.7 (3)	1.503 (4)		2.443 (6)	2.506 (7)
$\mathrm{O}\left(5^{\mathrm{v}}\right)$		$15 \cdot 2$ (3)	108.6 (3)		1.506 (4)	2.509 (6)
$\mathrm{O}(7)$		$2 \cdot 3$ (3)	107.7 (3)		$107 \cdot 7$ (3)	1.601 (3)
MoNbO 6 octahedra						
MoNb	$\mathrm{O}(1)$	$\mathrm{O}(2)$	O(3)	$\mathrm{O}(4)$	O(5)	O(6)
$\mathrm{O}(1)$	1.908 (1)	$2 \cdot 816$ (6)	4.012 (7)	$2 \cdot 814$ (7)	$2 \cdot 778$ (6)	$2 \cdot 832$ (6)
$\mathrm{O}(2)$	92.1	2.004 (5)	2.902 (6)	4.031 (7)	$2 \cdot 805$ (6)	$2 \cdot 884$ (6)
$\mathrm{O}(3)$	177.7 (2)	89.8 (2)	$2 \cdot 105$ (4)	2.843 (6)	$2 \cdot 886$ (6)	2.889 (6)
$\mathrm{O}(4)$	91.2 (2)	176.0 (2)	86.9 (2)	2.030 (4)	$2 \cdot 846$ (6)	2.875 (6)
$\mathrm{O}(5)$	90.0 (2)	88.4 (2)	88.8 (2)	89.3 (2)	2.020 (4)	4.036 (7)
O (6)	$92 \cdot 3$ (2)	91.7 (2)	89.0 (2)	$90 \cdot 5$ (2)	177.7 (2)	2.017 (4)
KO_{8} polyhedra						
$\mathrm{K}-\mathrm{O}\left(7^{\mathrm{V}}\right)$		2.753 (8)		- $\mathrm{O}\left(6^{\text {vii }}\right.$)	3.04	
$\mathrm{K}-\mathrm{O}\left(2^{\prime \prime}\right)$		$2 \cdot 825$ (6)		- $\mathrm{O}\left(3^{\prime}\right)$	$3 \cdot 18$	(6)
$\mathrm{K}-\mathrm{O}\left(2^{\text {vi }}\right.$)		2.825 (6)		- $\mathrm{O}\left(3^{\text {viii }}\right.$)	$3 \cdot 18$	(6)
$\mathrm{K}-\mathrm{O}(6)$		3.042 (6)		$\mathrm{K}-\mathrm{O}\left(1^{i i}\right)$	3.27	(8)

Symmetry code: (i) $-x,-y,-z$; (ii) $-x, 0 \cdot 5+y, z$; (iii) $x, 0 \cdot 5-y,-z$; (iv) $1-x, 0.5+y, z$; (v) $-x, y-0.5, z$; (vi) $-x, 0.5-y, 0.5-z$; (vii) x, y, $0 \cdot 5-z$; (viii) $-x,-y, 0 \cdot 5+z$.

The K ions are surrounded by eight O atoms, with distances less than $3 \cdot 35 \AA$ (Table 2).

It is worth pointing out that the metallic elements in octahedral coordinations exhibit a mean oxidation
state of $4 \cdot 125$ compared with 4 for $\mathrm{KMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$. Because of the difficulty of niobium being in the tetravalent state in phosphates, unlike molybdenum which can be presumed to be $\mathrm{Mo}^{\text {IV }}$, a mean valency of 4.25 is suggested for niobium which coincides with that observed in $\mathrm{Na}_{0.5} \mathrm{Nb}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ (Leclaire et al., 1990).

References

Benabbas, A., Borel, M. M., Grandin, A., Leclaire, A. \& Raveau, B. (1990). J. Solid State Chem. 84, 365-374.
Benmoussa, A., Leclaire, A., Grandin, A. \& Raveau, B. (1990). Acta Cryst. C45, 1277-1279.
Chen, J. J., Lif, K. H. \& Wang, S. L. (1988). J. Solid State Chem. 76, 204-209.
Leclaire, A., Benabbas, A., Borel, M. M., Grandin, A. \& Raveau, B. (1989). J. Solid State Chem. 83, 245-254.
Leclaire, A., Borel, M. M., Grandin, A. \& Raveau, B. (1989a). Z. Kristallogr. 188, 77-83.

Leclaire, A., Borel, M. M., Grandin, A. \& Raveau, B. (1989b). J. Solid State Chem. 80, 12-16.

Leclaire, A., Borel, M. M., Grandin, A. \& Raveau, B. (1989c). Acta Cryst. C45, 699-701.
Leclaire, A., Borel, M. M., Grandin, A. \& Raveau, B. (1990). Mater. Res. Bull. In the press.
Leclaire, A., Monier, J. C. \& Raveau, B. (1983). J. Solid State Chem. 48, 147-153.
Leclaire, A. \& Raveau, B. (1988). Acia Cryst. C44, 226-229.
Lit, K. H. \& Haushalter, R. C. (1987). J. Solid State Chem. 69, 320-328.
Lit, K. H., Johnston, D. C., Goshorn, D. P. \& Haushalter, R. C. (1987). J. Solid State Chem. 71, 131-138.

Riou, D. \& Goreaud, M. (1989). J. Solid State Chem. 79, 99-106.

Structure of Barium Copper Pyrosilicate at $\mathbf{3 0 0} \mathbf{K}$

By J. Janczak and R. Kubiak
Institute for Low Temperature and Structure Research, Polish Academy of Science, 50-950 Wroclaw, Pl Katedralny 1, Poland

and T. GŁowiak
Institute of Chemistry, Univeristy of Wroclaw, 50-383 Wroclaw, Joliot-Curie 14, Poland
(Received 28 August 1989; accepted 9 November 1989)

Abstract

Barium dicopper disilicate, $\mathrm{BaCu}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}, M_{r}$ $=432 \cdot 6$, orthorhombic, Pnma, $a=6.866$ (2), $b=$ $13 \cdot 190$ (3), $c=6.909$ (2) $\AA, V=625 \cdot 7$ (3) $\AA^{3}, Z=4$, $D_{x}=4.592 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $137.47 \mathrm{~cm}^{-1}, F(000)=792, T=300 \mathrm{~K}$, final $R=$ 0.031 for 1039 independent reflections. The structure solution and refinement established the crystal stoichiometry as $\mathrm{BaCu}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$. The structure contains isolated groups of $\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]^{6-}$ with the $\mathrm{Si}-\mathrm{O}$ distances

0108-2701/90/081383-03\$03.00
ranging from 1.610 (4) to 1.662 (2) \AA. The barium and copper cations have irregular coordination polyhedra. Ba^{2+} is coordinated by 7 O atoms, and Cu^{2+} by $4+1 \mathrm{O}$ atoms.

Introduction. The '1-2-3'-type superconductors have the ability to interact with oxygen. This interaction is very important because superconducting properties depend on the oxygen stoichiometry (Pietraszko, (C) 1990 International Union of Crystallography

Table 1. Final atomic coordinates and equivalent isotropic thermal parameters, $U_{\text {eq }}$, with e.s.d.'s in parentheses

	x	y	z	$U_{\text {eq }}$
Ba	-0.0130 (1)	0.25	0.9570 (1)	0.0081 (1)
Cu	$0 \cdot 2223$ (1)	0.0042 (1)	0.7936 (1)	0.0061 (2)
Si	0.0024 (2)	$0 \cdot 1340$ (1)	0.4729 (2)	0.0051 (5)
O1	0.09660 (7)	0.25	$0 \cdot 4828$ (8)	0.0080 (12)
O2	-0.1718 (5)	0.1338 (2)	0.6309 (5)	$0 \cdot 0097$ (7)
O3	-0.0589 (5)	$0 \cdot 1121$ (2)	0.2519 (5)	0.0107 (8)
04	$0 \cdot 1828$ (5)	0.0597 (2)	0.5340 (5)	0.0067 (5)

Table 2. Selected interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

		$\mathrm{O} 1-\mathrm{O} 2$	$2 \cdot 605$ (5)
$\mathrm{Si}-\mathrm{Ol}$	1.662 (2)	$\mathrm{O} 1-\mathrm{O} 3$	2.645 (5)
$\mathrm{Si}-\mathrm{O} 2$	1.619 (4)	$\mathrm{Ol}-\mathrm{O} 4$	2.603 (3)
$\mathrm{Si}-\mathrm{O} 3$	1.610 (4)	$\mathrm{O} 2-\mathrm{O} 3$	2.746 (5)
$\mathrm{Si}-\mathrm{O} 4$	1.635 (3)	$\mathrm{O} 2-\mathrm{O} 4$	2.708 (5)
		O3-O4	2.652 (5)
$\mathrm{Cu}-\mathrm{O} 4$	1.956 (3)	$\mathrm{Ba}-\mathrm{Ol}{ }^{\text {vii }}$	2.713 (5)
$\mathrm{Cu}-\mathrm{O4}^{\text {i }}$	1.973 (3)	$\mathrm{Ba}-\mathrm{O} 2$	2.932 (3)
$\mathrm{Cu}-\mathrm{O3}^{\text {i }}$	2.789 (4)	$\mathrm{Ba}-\mathrm{O}^{\text {iv }}$	2.932 (3)
$\mathrm{Cu}-\mathrm{O}^{\text {ii }}$	1.930 (3)	$\mathrm{Ba}-\mathrm{O3}^{v}$	2.749 (3)
$\mathrm{Cu}-\mathrm{O}^{3 i \mathrm{ii}}$	1.926 (3)	$\mathrm{Ba}-\mathrm{O}^{\text {vi }}$	2.749 (3)
		$\mathrm{Ba}-\mathrm{O}^{\text {ii }}$	2.863 (3)
		$\mathrm{Ba}-\mathrm{O}^{\text {vii }}$	2.863 (3)
$\mathrm{O} 1-\mathrm{Si}-\mathrm{O} 2$	$105 \cdot 2$ (2)	$\mathrm{O} 2^{\text {ij}}-\mathrm{Cu}-\mathrm{O} 4^{\mathrm{i}}$	88.2 (2)
$\mathrm{Ol}-\mathrm{Si}-\mathrm{O} 3$	$107 \cdot 8$ (2)	$\mathrm{O} 3^{\text {iii- }}-\mathrm{Cu}-\mathrm{O} 4$	93.9 (2)
$\mathrm{Ol}-\mathrm{Si}-\mathrm{O} 4$	$104 \cdot 0$ (2)	$\mathrm{O} 3^{\text {iii- }}-\mathrm{Cu}-4^{4}$	$89 \cdot 3$ (2)
$\mathrm{O} 2-\mathrm{Si}-\mathrm{O} 3$	116.4 (2)		
$\mathrm{O} 2-\mathrm{Si}-\mathrm{O} 4$	112.8 (2)		
$\mathrm{O} 3-\mathrm{Si}-\mathrm{O} 4$	109.6 (2)	$\mathrm{Ol}^{\text {viii- }} \mathrm{Ba}-\mathrm{O}^{\text {vii }}$	$147 \cdot 3$ (2)
$\mathrm{Si}-\mathrm{Ol}-\mathrm{Si}$	$133 \cdot 4$ (1)	$\mathrm{O} 1^{\text {viii- }}-\mathrm{Ba}-\mathrm{O}^{\text {ii }}$	147.3 (2)
$\mathrm{O} 3^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 4$	$103 \cdot 1$ (2)	$\mathrm{Ol}^{\text {viii- }} \mathrm{Ba}-\mathrm{O} 2$	75.6 (2)
$\mathrm{O3}^{\mathbf{i}}-\mathrm{Cu}-\mathrm{O}^{\text {i }}$	$65 \cdot 0$ (2)	$\mathrm{O} 1^{\text {viii- }} \mathrm{Ba}-\mathrm{O}^{\text {iv }}$	75.6 (2)
$\mathrm{O}^{3}-\mathrm{Cu}-\mathrm{O}^{\text {ii }}$	101.8 (2)	$\mathrm{Ol}^{\text {viii- }}$ - $\mathrm{Ba}-\mathrm{O}^{\text {v }}$	76.8 (2)
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{O}^{\text {iii }}$	91.5 (2)	$\mathrm{Ol} 1^{\text {viii- }} \mathrm{Ba}-\mathrm{O3}^{\text {vi }}$	76.8 (2)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Cu}-\mathrm{O} 4$	91.7 (2)	$\mathrm{O} 2-\mathrm{Ba}-\mathrm{O3}^{2}$	$100 \cdot 5$ (2)
		$\mathrm{O} 2-\mathrm{Ba}-\mathrm{O}^{2 \mathrm{iv}}$	$62 \cdot 8$ (2)
		$\mathrm{O} 2-\mathrm{Ba}-\mathrm{O}^{\text {vii }}$	$150 \cdot 6$ (2)

Symmetry code: (i) $0.5-x,-y, 0.5+z$; (ii) $0.5+x, y, 1+0.5-z$; (iii) $-x,-y, 1-z$; (iv) $x, 0 \cdot 5-y, z$; (v) $x, y, 1+z$; (vi) $x, 0 \cdot 5-y$, $1+z$; (vii) $0.5+x, 0.5-y, 1.5-z$; (viii) $-0.5+x, y, 1.5-z$.

Wołcyrz, Horyń, Bukowski, Łukaszewicz \& Klamut, 1988; Welch, Emery \& Cox, 1987). Heating of the '1-2-3' compounds results in reversible loss of oxygen, which indicates a high chemical activity. Therefore, one could expect these compounds to be not only potentially superconducting but also chemically reactive materials. In this work we present the crystal structure of the title compound, obtained as a product of the reaction between $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-x}$ and SiO_{2} in the presence of $\mathrm{Bi}_{2} \dot{\mathrm{O}}_{3}$.

Experimental. Crystals were obtained in the reaction of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-x}$ with $\mathrm{Bi}_{2} \mathrm{O}_{3}$ taken in the molar proportion $1: 1 \cdot 5$. The mixture was heated in a quartz tube at 1073 K for one day and quenched in air. At high temperature the mixture reacted with the tube
walls. $\mathrm{BaCu}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ was formed as the major phase (Janczak, Kubiak \& Głowiak, 1989).

A blue rectangular crystal with dimensions $0.13 \times$ $0.15 \times 0.12 \mathrm{~mm}$ (density not measured) was used for the data collection on a Syntex $P 2_{1}$ diffractometer with graphite-monochromated Mo $K \alpha$ radiation. The space group was determined from Weissenberg photographs; the systematic absences $0 \mathrm{kl}: k+l=2 n$ +1 and $h k 0: h=2 n+1$ limited the possible space groups to Pnma and Pn2 ${ }_{1}$ a Pnma was used in the structure solution and refinement. The lattice parameters were refined by least-squares fit of 15 reflections in the range $15<2 \theta<25^{\circ}$. 1988 [1967 with $\left|F_{o}\right|>$ $\left.3 \sigma\left(F_{o}\right)\right]$ reflections were measured using $\theta / 2 \theta$ scan technique; $2 \theta \leq 60^{\circ}, h k l$ range: $h, 0$ to $10 ; k,-18$ to $18 ; l, 0$ to 10 . Two standard reflections were monitored every 50 reflections. They showed no significant intensity variation. The measured intensitites were corrected for Lorentz, polarization and absorption effects, absorption using the program DIFABS (Walker \& Stuart, 1983), min. and max. absorption correction 0.829 and 1.246 , respectively. 1039 independent reflections ($R_{\text {int }}=0.028$) were used in subsequent calculations.

The structure was solved by the Patterson method and subsequent difference Fourier syntheses (SHELXS86; Sheldrick, 1986). The structure was refined by the full-matrix least-squares method with

Fig. 1. A stereoview of the unit-cell contents of the title compound.

Fig. 2. Views of the copper and barium-oxygen coordination polyhedra.
anisotropic temperature factors (SHELX76; Sheldrick, 1976). Empirical secondary-extinction correction applied according to the formula $F_{\text {cor }}=F(1$ $\left.-x F^{2} / \sin \theta\right)$ where x converged to 0.00121 (6). The function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ with $w=$ $3.6713 / \sigma^{2}\left(F_{o}\right)$. Final $R=0.031, w R=0.037$ for 59 refined parameters, $(\Delta / \sigma)_{\max }=0.001$. Minimum and maximum heights in the final $\Delta \rho$ map were -1.41 and $2.85 \mathrm{e} \AA^{-3}$, near the barium positions. Scattering factors including corrections for anomalous dispersion were taken from International Tables for X-ray Crystallography (1974). Figures were drawn with PLUTO78 (Motherwell \& Clegg, 1978) and ORTEP (Johnson, 1965). All calculations were performed with an IBM PC/AT.

Discussion. Positional and equivalent isotropic thermal parameters are given in Table 1,* while details of interatomic distances and bond angles are given in Table 2. The structure of $\mathrm{BaCu}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ is shown in Fig. 1.

The characteristic feature of the structure is the existence of isolated anions of $\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]^{6-}$. The interatomic $\mathrm{Si}-\mathrm{O}$ distances ranging from $1 \cdot 610$ (4) to 1.662 (2) \AA are typical of this group and comparable with distances for other pyrosilicates (Batalieva \& Patenko, 1967; Betechtin, 1950), and, especially $\mathrm{Ba}_{2} \mathrm{CuSi}_{2} \mathrm{O}_{7}$ (Malinovskij, 1984). However, the angle $\mathrm{Si}-\mathrm{O}-\mathrm{Si}\left[133 \cdot 4(1)^{\circ}\right]$ is smaller than in $\mathrm{Ba}_{2} \mathrm{CuSi}_{2} \mathrm{O}_{7}$. This difference is a consequence of the smaller distance between barium and the bridging oxygen. The

[^0]coordination polyhedra of barium and copper are also different from those in $\mathrm{Ba}_{2} \mathrm{CuSi}_{2} \mathrm{O}_{7}$. The cations Ba^{2+} and Cu^{2+} coordinated by O atoms from $\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]^{6-}$ groups form irregular polyhedra (Fig. 2). The Ba^{2+} is coordinated by seven O atoms with distances ranging from 2.713 (6) to 2.932 (4) \AA. The Cu^{2+} is coordinated by $4+1 \mathrm{O}$ atoms. The nearest four O atoms and copper cation [with distances ranging from 1.926 (3) to 1.973 (3) \AA] do not lie on the same plane and with the fifth oxygen [with $\mathrm{Cu}-\mathrm{O}$ distance $2.789(4) \AA$] the coordinated O atoms form an irregular pyramid.

References

Batalieva, N. G. \& Patenko, A. J. (1967). Zh. Strukt. Khim. 8(3), 248-249.
Betechtin, A. G. (1950). Mineral. Pol. pp. 728-732.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Janczak, J., Kubiak, R. \& Glowiak, T. (1989). 12th Eur. Crystallogr. Meet., Moscow, USSR.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Malinovskij, Yu. A. (1984). Dokl. Akad. Nauk. SSSR, 278(3), 616-619.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO78. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Pietraszko, A., Wolcyrz, M., Horyń, R., Bukowski, Z., Łukaszewicz, K. \& Klamut, J. (1988). Cryst. Res. Technol. 23(3), 351-357.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for crystal structure solution. Univ. of Göttingen, Federal Republic of Germany.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Welch, D. O., Emery, V. J. \& Cox, D. E. (1987). Nature (London), 327(28), 278-279.

Structure of Pentakis(methylammonium) Undecabromodibismuthate

By Janusz Matuszewski
Department of Inorganic Chemistry, Faculty of Engineering, School of Economics, 50-345 Wroclaw, Poland
and Ryszard Jakubas, Lucjan Sobczyk and Tadeusz Glowiak
Institute of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland

(Received 30 March 1989; accepted 24 October 1989)

Abstract. $\left[\mathrm{NH}_{3}\left(\mathrm{CH}_{3}\right)_{5}\left[\mathrm{Bi}_{2} \mathrm{Br}_{11}\right], M_{r}=1457 \cdot 3\right.$, orthorhombic, $P c a 2_{1}, a=13.405$ (3), $b=14.462$ (3), $c=$ 16.006 (3) $\AA, \quad V=3102.9$ (7) $\AA^{3}, \quad Z=4, \quad D_{x}=$ 0108-2701/90/081385-04\$03.00
$3.119 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \quad \mu=$ $257.7 \mathrm{~cm}^{-1}, F(000)=2584, T=297 \mathrm{~K}$, refinement based on 1976 diffractometric data with $I>3 \sigma(I)$
© 1990 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52778 (9 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

